Is your property on contaminated land?
The regulations you should consider before submitting your consent applications

1. National Environmental Standard (N.E.S)
 - Controls any soils contaminated above ‘background’ concentrations
 - Governs and investigates risks to human health

 If soil contamination above background concentrations are present, but pose no risk to human health or the environment:
 - Seek council consent for earthworks and disposal (above certain trigger volumes), subdivision works or land use changes
 - Be aware that your soil can stay on site, but can’t be disposed of as cleanfill. If you have excess soils you’ll have to either:
 - pay for it to be disposed of at a suitable site (determined by your level of soil contamination)
 - or find a way to re-use the excess soil onsite

 If human health risks are present:
 - Remove
 - Budget for costs to dispose of contaminated soils safely
 - Dilute
 - Seek council consent to potentially dilute the concentration of soil contamination on site
 - Note: not all councils will allow this option
 - Move
 - Seek council approval to move the contaminated soil to an area on site used for less sensitive activities e.g. commercial / roads
 - Short term discharge consent during earthworks and / or
 - Long term discharge consent (if contamination above environmental guidelines is staying on site)

2. Local & Regional Council
 - Governs and investigates risks to the environment
 - Risk?
 - Yes
 - No

 If environmental risks are present you may need:
 - short term discharge consent during earthworks and / or
 - long term discharge consent (if contamination above environmental guidelines is staying on site)

Implications to your project and budget
- Potential increased transport costs for disposal to a suitable site
- Development plan may be needed to address excess soil
- Time delays
- Increased disposal costs
- Testing to confirm remediation is effective
- Costly site controls and measures for excavation and loading of soil